Z,?

Building Java Programs

Chapter 8
Lecture 8-3: Constructors; Encapsulation

reading: 8.3 - 8.6
self-checks: #13-18, 20-21
exercises: #5, 9, 14

~ " Copyright 2010 by Pearson Education

Z’-?

The toString method

reading: 8.6

self-check: #18, 20-21
exercises: #9, 14

~ " Copyright 2010 by Pearson Education

Printing objects

By default, Java doesn't know how to print objects:

Point p = new Point();

p.x = 10;

p.y = 7;

System.out.println("p is " + p); // p is
Point@9e8c34

// better, but cumbersome; p is (10, 7)

System.out.println("p is (" + p.x + ", " + p.y +
")");

// desired behavior
System.out.println("p is " + p); // p is (10, 7)

; ~ Copyright 2010 by Pearson Education

The toString method

tells Java how to convert an object intoa String

Point pl = new Point (7, 2);
System.out.println("pl: " + pl);

// the above code is really calling the following:
System.out.println("pl: " + pl.toString()):

Every class hasa toString, evenifitisn'tin your code.

Default: class's name @ object's memory address (base 16)

Point@9%e8c34

Copyright 2010 by Pearson Education

toString syntax

public String toString() {
code that returns a String representing this object;

Method name, return, and parameters must match exactly.

Example:
// Returns a String representing this Point.

public String toString() {
return "(" + x + ", " + y +

ll)"’.

}

Copyright 2010 by Pearson Education

P e S

Object initialization:
constructors
reading: 8.4

self-check: #10-12
exercises: #9, 11, 14, 16

~ " Copyright 2010 by Pearson Education

Initializing objects

Currently it takes 3 lines to create a Point and initialize it:

Point p = new Point();
p-x = 3;
pP.y = 8; // tedious

We'd rather specify the fields' initial values at the start:

Point p = new Point (3, 8); // better!

We are able to this with most types of objects in Java.

Copyright 2010 by Pearson Education

Constructors

constructor: Initializes the state of new objects.

public type (parameters) {
statements;

}

runs when the client uses the new keyword

no return type is specified;
it implicitly "returns"” the new object being created

If a class has no constructor, Java gives it a default constructor with no
parameters that sets all fields to 0.

Copyright 2010 by Pearson Education

Constructor example

public class Point {
int x;
int vy;

// Constructs a Point at the given x/y location.
public Point(int initialX, int initialY) ({

X = initialX;

y = initialy;

public void translate(int dx, int dy) {
X X + dx;

Y y + dy;

Copyright 2010 by Pearson Education

Tracing a constructor call

* What happens when the following call is made?

Point pl =

p1(y—

new Point (7, 2);

X

public Point (int initialX,

Y

X = initialX;
y = initialy;

int initialyY)

public void translate(int dx, int dy) {

X += dx;
y += dy;

{

Copyright 2010 by Pearson Education

10

Client code, version 3

public class PointMain3 {
public static void main (String[] args) {
// create two Point objects
Point pl = new Point(5, 2);
Point p2 = new Point (4, 3);

// print each point
System.out.println("pl: (" + pl.x + ", " + pl.y + ")");
System.out.println("p2: (" + p2.x + ", " + p2.y + "M)");

// move p2 and then print it again
p2.translate (2, 4);

System.out.println("p2: (" + p2.x + ", " + p2.y + "M)");
}
}
OUTPUT:
pl: (5, 2)
p2: (4, 3)
p2: (6, 7)

_ Copyright 2010 by Pearson Education

Multiple constructors

A class can have multiple constructors.
Each one must accept a unigue set of parameters.

Exercise: Write a Point constructor with no parameters that
initializes the point to (0, 0).

// Constructs a new point at (0, 0).
public Point () {

x = 0;

y = 0;

Copyright 2010 by Pearson Education

12

Common constructor bugs

1. Re-declaring fields as local variables ("shadowing"):
public Point (int initialX, int initialyY) {
X initialX;
Y initialY;

}

This declares local variables with the same name as the fields, rather than storing
values into the fields. The fields remain O.

2. Accidentally giving the constructor a return type:

public Point (int initialX, int initialY) {
X = 1nitialX;
y = initialY;

}

This is actually not a constructor, but a method named Point

13

Copyright 2010 by Pearson Education

Z,?

Encapsulation

reading: 8.5 - 8.6
self-check: #13-17
exercises: #5

- ‘A‘ 14 14
~ " Copyright 2010 by Pearson Education

—

Encapsulation

* encapsulation: Hiding implementation details from clients.

* Encapsulation forces abstraction.
* separates external view (behavior) from internal view (state)

» protects the integrity of an object's data

EREEN
1

40310

Mo OUTPUT

1,7

Registor
Here

Measure—mg
Vvoltage .82
Here ™

i

~ Copyright 2010 by Pearson Education

15

Private fields

A field that cannot be accessed from outside the class

private type name;

Examples:

private int id;
private String name;

Client code won't compile if it accesses private fields:

PointMain.java:11: x has private access in Point
System.out.println(pl.x) ;

A

Copyright 2010 by Pearson Education

16

—

e

Accessing private state

// A "read-only" access to the x field ("accessor")

public int getX () {
return Xx;

}

// Allows clients to change the x field ("mutator")

public void setX (int newX) {
X = newX;

}

Client code will look more like this:

System.out.println (pl.getX())
pl.setX(14) ;

Copyright 2010 by Pearson Education

17

Point class, version 4

// A Point object represents an (x, y) location.
public class Point {

private int x;

private int y;

public Point(int initialX, int initialY) {
X = initialX;
y = initialY;

}

public int getX() {
return x;
}

public int getY¥Y () {
return y;
}

public double distanceFromOrigin () {
return Math.sgrt(x * x + y * vy);

}

public void setLocation (int newX, int newY)
X = newX;
Yy = newy;

}

public void translate(int dx, int dy) {
setLocation(x + dx, y + dy);
}
}

Copyright 2010 by Pearson Education

{

18

Benefits of encapsulation

Abstraction between object and clients

Protects object from unwanted access
Example: Can't fraudulently increase an Account's balance.

Can change the class implementation later
Example: Point could be rewritten in polar

coordinates (r, 8) with the same methods.

Can constrain objects' state (invariants)
Example: Only allow Accounts with non-negative balance.
Example: Only allow Dates with a month from 1-12.

Copyright 2010 by Pearson Education

19

/—/-?

The keyword this

reading: 8.7

° 20

__ Copyright 2010 by Pearson Education

The this keyword

this : Refers to the implicit parameter inside your class.
(a variable that stores the object on which a method is called)

Refer to a field: this.field
Call a method: this.method (parameters) ;
One constructor this (parameters) ;

can call another:

Copyright 2010 by Pearson Education

21

Variable shadowing

shadowing: 2 variables with same name in same scope.
Normally illegal, except when one variable is a field.

public class Point {
private int x;
private int y;

// this is legal
public voild setLocation(int x, int y) {

In most of the class, x and vy refer to the fields.
In setLocation, x and y refer to the method's parameters.

Copyright 2010 by Pearson Education

22

Fixing shadowing

public class Point {
private int x;
private 1int y;

public void setlLocation(int x, 1int y) {
this.x = x;
this.y = y;

Inside setLocation,
To refer to the data field x, say this.x
To refer to the parameter x, say x

Copyright 2010 by Pearson Education

Calling another constructor

public class Point {
private int x;
private int vy;

public Point {

()
this(Q{\Si;* // calls (x, y) constructor
} \

public Point (int x, int y) {
this.x = x;
this.y = y;

Avoids redundancy between constructors
Only a constructor (not a method) can call another constructor

Copyright 2010 by Pearson Education

24

